Bootstrapping the Maximum Likelihood Estimator in High-Dimensional Log-Linear Models
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Estimation in Log - Linear Models
We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a non-existent MLE. Our conditions focus on the role of sampling zeros in the observed tabl...
متن کاملMaximum Likelihood for Variance Estimation in High-Dimensional Linear Models
The plots in Figure 1 from the main text were generated using various estimators of σ 0 , each of which was computed for 500 independent datasets (y, X). The datasets were generated according to the linear model (1)– (2) (equation references refer to the main text), with n = 500, p = 1000, σ 0 = 1, and η 2 0 = 4. We considered settings where β had various sparsity levels, indicated by a paramet...
متن کاملComputing Maximum Likelihood Estimates in Log-Linear Models
We develop computational strategies for extended maximum likelihood estimation, as defined in Rinaldo (2006), for general classes of log-linear models of widespred use, under Poisson and product-multinomial sampling schemes. We derive numerically efficient procedures for generating and manipulating design matrices and we propose various algorithms for computing the extended maximum likelihood e...
متن کاملMaximum Likelihood Estimation in Log-Linear Models Supplementary Material: Algorithms
We use the theory developed in FR to derive efficient algorithms for extended maximum likelihood estimation in log-linear models under Poisson and product multinomial schemes. The restriction to these sampling schemes is motivated by a variety of reasons. First, these schemes encode sampling constraints that arise most frequently in practice. In particular, these are the sampling schemes practi...
متن کاملOn Maximum Likelihood Estimation in Log-Linear Models
In this article, we combine results from the theory of linear exponential families, polyhedral geometry and algebraic geometry to provide analytic and geometric characterizations of log-linear models and maximum likelihood estimation. Geometric and combinatorial conditions for the existence of the Maximum Likelihood Estimate (MLE) of the cell mean vector of a contingency table are given for gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1989
ISSN: 0090-5364
DOI: 10.1214/aos/1176347264